A system of abstract measure delay differential equations
نویسندگان
چکیده
منابع مشابه
Periodicity in a System of Differential Equations with Finite Delay
The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.
متن کاملTotal Stability in Abstract Functional Differential Equations with Infinite Delay
Recently, authors [2] have discussed some equivalent relations for ρ-uniform stabilities of a given equation and those of its limiting equations by using the skew product flow constructed by quasi-processes on a general metric space. In 1992, Murakami and Yoshizawa [6] pointed out that for functional differential equations with infinite delay on a fading memory space B = B((−∞, 0];R) ρ-stabilit...
متن کاملAnalysis of a System of Linear Delay Differential Equations
A new analytic approach to obtain the complete solution for systems of delay differential equations (DDE) based on the concept of Lambert functions is presented. The similarity with the concept of the state transition matrix in linear ordinary differential equations enables the approach to be used for general classes of linear delay differential equations using the matrix form of DDEs. The solu...
متن کاملStability in a Three-dimensional System of Delay-differential Equations
The stability properties of the null solution of the three-dimensional linear system x = -x(t) +Ax(t -T) are investigated. When all the diagonal entries of the matrix A are zero, the values of the parameters (remaining entries in the matrix A and the time-delay T) for which this solution is asymptotically stable are explicitly determined. The relation of this result to neural network models is ...
متن کاملA numerical method for solving delay-fractional differential and integro-differential equations
This article develops a direct method for solving numerically multi delay-fractional differential and integro-differential equations. A Galerkin method based on Legendre polynomials is implemented for solving linear and nonlinear of equations. The main characteristic behind this approach is that it reduces such problems to those of solving a system of algebraic equations. A conver...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations
سال: 2003
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2003.1.8